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Abstract-The proper prediction of crack widths in plain concrete and the spacing of primary
cracks in reinforced concrete are the subject of this paper. Attention is focused on the influence of
the crack concept. A comparison has been made between the standard crack model, the crack model
with the fracture energy as a separate parameter, the rate-dependent crack model and the gradient
crack modeL It is shown that for reinforced concrete, use of one of the first two models results in a
random location of primary cracks and consequently in a random value for the crack spacing. The
effect of the inclusion of a length scale parameter in the latter two models has been determined with
respect to the crack width in plain concrete and the crack spacing in reinforced concrete. Further­
more, attention is paid to the crucial role of the bond-slip characteristic in predicting crack spacing
in reinforced elements. Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

In this paper we focus on the proper prediction of the width of cracks in plain concrete and
the width and spacing of primary cracks in reinforced concrete. The influence of the crack
concept on these quantities and, more specifically, the introduction of a length scale in the
crack concept will be investigated. The length scale parameter not only sets the width of a
single crack, but in cases where redistribution of stresses and multiple cracking is possible,
as for instance in reinforced concrete, it also heavily influences the spacing between cracks.

If we use a standard crack model for the description of concrete a mesh sensitivity
occurs during the formation ofa single crack and also with respect to the pattern of primary
cracks in reinforced concrete. The width of a single crack and the spacing between the
primary cracks is affected by the discretization, i.e. a smaller element size results in a smaller
crack width and in random distances between cracks. For dynamic calculations the value
for the crack spacing is not only dependent on the spatial discretization but also on the
discretization in time. On the other hand, when a pattern of cracks has developed fully the
behavior is mainly determined by the steel and no additional spurious mesh size effects
occur. Enhancing the crack model by including the fracture energy as a separate material
parameter does not solve the problem for reinforced concrete, since the amount of energy
that is released by a fully developed pattern of primary cracks is determined by firstly the
energy consumpt~on of a single crack and secondly the crack spacing. It will be shown that
this latter quantity is not predicted correctly with a so-called fracture energy-type crack
model.

To remedy this improper behavior the standard crack model can be enriched by adding
higher-order terms, either spatially or in the time domain. Alternatively, discontinuities like
cracks can directly be incorporated into the element concept, e.g. along the lines proposed
by Simo (Simo et al., 1993; Simo, 1994). Higher-order models introduce a length scale
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parameter that reflects the inhomogeneous micro-structure of the material. This parameter
sets the size of the fracture process zone. This will be illustrated for plain concrete using a
strain-rate dependent crack model for a double-notched specimen problem under impact
loading. In reinforced concrete structures the introduction of a length scale through higher­
order strain-rate or strain-gradient terms determines the failure mode and is proportional
to the spacing of the primary cracks. Use of the gradient model therefore removes the mesh
dependence in the primary crack spacing and a comparison with experimentally measured
values for the crack spacing may provide a physically realistic estimation of the length scale
parameter. The proper modeling of the bond-slip behavior is also of crucial importance.
An analysis has been carried out on a bar with one reinforcing bar loaded at both sides by
a dynamic load. The dynamic case for this problem is easier to perform computationally.
The evolution of the primary crack pattern follows the stress wave and, depending on the
crack formulation, primary cracks occur at more or less regular distances. In statics, on the
other hand, the first primary cracks occur at imperfect locations and other cracks form at
intermediate points which gives a value for the crack spacing. So, in dynamic computations
no imperfections have to be included because the non-uniform solution is driven by the
stress wave. The evolution of primary cracks is different from the static case, but the
resulting value for the crack spacing is of the same order, except for a negligible rate effect.

2. GEOMETRICAL MODELING OF REINFORCED CONCRETE

A number of approaches for the finite element modeling of reinforced concrete can be
distinguished. If the micro-behavior in the vicinity of the reinforcing bar is of particular
interest a modeling of the reinforcing bar with ribs that provide the mechanical interlock is
required. By using such a computational model next to the primary or dominant cracks,
secondary transverse cracks, longitudinal cracks and crushing in compressive zones close
to the ribs can be analyzed (Rots, 1988). This approach is essential for a better under­
standing of the bond~slip behavior between the concrete and the steel. However, for
analyses of reinforced concrete members the above approach is too complicated since it
includes all possible mechanisms. Depending on the distribution of the reinforcement, two
approaches can be used. When the reinforcement is concentrated in a few dominant
reinforcing bars the traction-slip behavior can be lumped into interfaces. The width and
spacing of the primary cracks can be studied with this type of modeling. Alternatively,
when the concrete is densely reinforced not every reinforcing bar can be modeled separately
and an embedded formulation is commonly used to model the primary cracks. Tension­
stiffening then accounts for the bond characteristics, but a true slip behavior between the
concrete and the steel cannot be modeled (Feenstra, 1993). In the analyses it will be
demonstrated that this slip behavior dominates the spacing of the primary cracks.

In this paper we focus on the proper prediction of the width and the spacing of primary
cracks in reinforced concrete. A level of modeling is adopted in which the traction-slip
behavior is explicitly taken into account via interface elements. In this fashion the influence
of the material characteristics for concrete, bond-slip and steel on the crack spacing can be
analyzed. An example of the finite element idealization of the composite material is shown
in Fig. 1, in which the steel reinforcement bars have been modeled with three-noded truss
elements, and in which six-noded interface elements have been introduced for the modeling
of the bond-slip behavior between the concrete and the reinforcement. The width i of the
interface element (Fig. 1) is equal to zero, while the thickness of the interface element is
equal to the periphery of the reinforcement bar. It is noted that such a model gives a small
overestimation of the cross-sectional area because the reinforcement is modeled in addition
to the beam. For this reason the density and the stiffness of the beam are slightly larger.

3. MATERIAL MODELING OF PLAIN AND REINFORCED CONCRETE

The crack concepts that will be used for plain and reinforced concrete will be discussed
now. We used a smeared model in which the crack is conceived to be a continuum which
permits a description in terms of stress-strain relations. Four different concepts have been
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Fig. I. Finite element idealization of reinforced element.

analyzed, namely the standard crack concept, the G,type crack concept, the strain-rate
dependent crack concept and the strain-gradient dependent crack concept. Additionally,
for reinforced concrete the constitutive relation for the steel is defined and the interactive
forces between the concrete and the steel bars are determined via a bond-slip relation,
which is the constitutive equation of the interface element.

Concrete: the standard crack model
In the standard formulation for cracking we use a decomposition of total strain e into

an elastic strain ee and a crack strain eer' In a major principal stress direction a stress
degradation takes place according to

(1)

where (f denotes stress,it is the initial tensile strength and h is a constant negative softening
modulus. The use ofa standard model for cracking results in an ill-posed problem, e.g. under
dynamic loading conditions each wave has an imaginary wave speed. As a consequence, a
continuum discretized in finite elements always shows a crack zone which is only one
element wide (mesh sensitivity problem). It appears that this solution for the cracked zone
belongs to a wave with a speed equal to zero (stationary wave) and a width (wave length)
equal to the finite element size (Sluys et aI., 1995). For linear elements this is demonstrated
in Fig. 2, in which in the top left figure the solution for the discretized continuum is the
stationary wave (c = 0 m S-I) with wave length equal to the element size d. This constant
strain element cannot reproduce the harmonic strain distribution belonging to the cor­
responding wave in the continuum, which causes the difference between the continuum and
the discretized medium in the top left figure. In the standard continuum model a length
scale is lacking which sets the width of the fracture process zone and gives information on
the inhomogeneous micro-structure of the concrete. In the discretized standard continuum
this length scale is thus set by the size of the finite elements. This is also the case for
reinforced concrete in which the spacing between the primary cracks is affected by the mesh
size as well. A smaller mesh size implies a faster degradation of stress and consequently a
second primary crack will occur sooner and at a shorter distance than the first crack.

Concrete: the Grtype crack model
As an intermediate solution between using the standard crack model and adding

higher-order terms a number of authors (Pietruszczak and Mr6z, 1981; Bazant and Oh,
1983; Willam, 1984) have proposed to regard the area under the softening curve as a
material parameter, namely the fracture energy.
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Fig. 2. Overview of length scale effects in (I) the standard concept, (2) the rate-dependent concept
and (3) the gradient-dependent concept.

Gr = JO"du = Jm:ds, (2)

in which 0 < s < w with w the width of the localization zone. The fracture energy must be
released over an equivalent length which, for a standard model, should correspond to a
representative dimension of the mesh size. In this fashion the slope of the strain-softening
diagram becomes a function of the finite element size. When we prescribe the fracture
energy Gr as an additional material parameter the global load-displacement response
can become insensitive to the discretization. However, locally nothing has altered and
localization still takes place in one row of elements. This is logical, since the change of
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character of the partial differential equations occurs locally, even though the energy that is
dissipated remains constant by adapting the softening modulus to the element size. For
numerical simulations this implies for instance that severe convergence problems are usually
encountered if the mesh is refined. Also, the frequently reported observation still holds that
the localization zones are biased by the discretization and tend to propogate along the mesh
lines (Larsson, 1990; Sluys, 1992). Also, for reinforced elements the energy released in a
single primary crack can be made mesh-objective in this way, but the spacing between the
primary cracks still depends on the finite element configuration.

Concrete: the rate-dependent crack model
From a physical point of view the introduction of rate dependence is perhaps the

most natural way to regularize ill-posed initial value problems which arise because of the
introduction of damage or frictional effects (Wu and Freund, 1984; Needleman, 1988;
Loret and Prevost, 1990; Sluys, 1992). Here we adopt a simple, linear rate-dependent
smeared crack model as developed by Sluys (Sluys and de Borst, 1992; Sluys, 1992). In it,
the major principal stress degrades according to

(3)

with Ecr the crack strain, h the softening modulus and m the viscosity. This model complies
with the experimental findings that the tensile strength increases under dynamic loading
(Zielinski, 1982; Kormeling, 1986). From an analysis of dispersive waves it can be dem­
onstrated that each wave in a rate-dependent cracked material has a real wave speed and
each wave is attenuated in the spatial domain according to a damping coefficient (Sluys,
1992). In Fig. 2 the damping coefficient rx is plotted as a function of the frequency. It is
observed that for smaller wavelengths (higher frequencies) the damping coefficient becomes
a constant. This constant amount of spatial damping is dependent on the viscosity of the
material and is a measure for the length scale parameter (Sluys, 1992) :

2m
1= ;-;:"

v'PE
(4)

A strain profile occurs in the cracked zone that is exponentially shaped as shown in Fig. 2.
For this model the rate boundary value problem remains well-posed and a length scale
parameter is introduced, which ensures the removal of spurious mesh dependence.

Concrete: the gradient crack model
A second model that can be used for the concrete to regularize the ill-posed problem

is the strain-gradient dependent crack model (Aifantis, 1984; Lasry and Belytschko, 1988;
Miihlhaus and Aifantis, 1991; de Borst and Miihlhaus, 1992; Sluys, 1992; Pamin, 1994).
Higher-order strain gradients are introduced which represent nonlocal interactions at a
micro-structural level of the concrete. The model is formulated within a Rankine plasticity
framework. An expression in one spatial direction reads

(5)

with c a gradient parameter which can be regarded as a measure for the interaction length
ofmicro-structural defects. A strain-gradient dependent continuum can only transmit waves
with wave lengths smaller than a critical value. This critical value of the wave length belongs
to a stationary wave (wave speed equal to zero) with a wave length which is determined by
the length scale parameter of the model (cf. de Borst and Miihlhaus, 1992).
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(6)

The stationary wave with the maximum wavelength that is transmitted by the strain­
gradient dependent continuum is represented by the point of intersection in the bottom left
plot in Fig. 2. The wavelength is equal to 2 nl which is the solution for the process zone of
one primary crack (see Sluys et aI., 1995). Mesh sensitivity is removed and the length scale
parameter introduced in the model is a measure for the crack width and the crack spacing,
as will be demonstrated in Section 5.

Steel reinforcement
For the steel bars a simple elastic-perfectly plastic relation has been used. In the

analysis described in Section 5 the response of the steel bar remains elastic, which drives
the redistribution of stresses and the occurrence of mUltiple cracking.

Bond-slip
Experimental data for a normal bond component are scarce and cannot be transformed

into a constitutive law (Rots, 1988). Therefore, the interface normal behavior and the
shear-normal coupling are not incorporated and the constitutive equation for the interface
element reduces to a shear traction-slip (r-<5) relation. This slip behavior between reinforce­
ment and concrete has been modeled using the relation of Dorr (1980) :

r = 1.9a if <5 > <5 0 ,

(7)

(8)

in which a is a constant which is taken equal to the tensile strength It and <50 is the
deformation at which perfect slip occurs, which is usually taken equal to 0.06 mm.

4. PLAIN CONCRETE-PREDICTION OF CRACK WIDTH

In the Stevin Laboratory of Delft University of Technology impact direct tension tests
have been carried out on double-notched, prismatic concrete specimens (Fig. 3). A specimen
with notches makes it possible to predetermine the failure zone and to measure the defor­
mation inside as well as outside the fracture zone. The tests have been performed with a
Split-Hopkinson bar apparatus by Weerheijm (1992). The specimen is kept between an
upper bar (6.7 m) and a lower bar (3.5 m) and the tensile pulse is applied at the bottom of
the experimental set-up. The main observations that have been reported are the ultimate
strength and the deformations inside and outside the fracture zone. The loading rate has
been measured after the pulse has passed the specimen and is affected by the failure process
and the geometry of the specimen. The response measured in the experiments is influenced
by structural effects such as the geometry of the specimen and the stiffness of the exper­
imental set-up. For this reason material parameters which determine the post-peak response
cannot be derived directly from the experiment. However, the combination of experimental
and numerical analyses makes it possible to separate the structural from the material
response, provided that a mathematically sound material model is used and that the
geometry and boundary conditions have been modeled correctly.

For the numerical modeling of the specimen and the Split-Hopkinson bar we assume
a plane-stress condition, thus neglecting possible three-dimensional effects. The upper and
lower bar of the Split-Hopkinson bar are very long to avoid reflections of the stress waves,
which would result in a disturbed response. In the numerical simulation the test rig can
therefore not be omitted, but must be modeled for a proper calculation of the response
without undesirable reflections. However, the element size in the numerical modeling of the
test rig is limited to the length traversed in one time step by the longitudinal elastic wave.
Use of a larger element size would disturb the shape of the impact loading wave. A
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Fig. 3. Impact test on a double-notched specimen. Top: finite element model of test rig. Bottom:
geometry, loading and material data for specimen.

straightforward discretization of the total Split-Hopkinson bar is therefore too expensive.
A configuration with fewer elements can be obtained if we make use of the acoustic
impedance,

(9)

of the material, in which A is the cross-sectional area of the adapter. If Z is kept constant,
no reflections occur at an interface of materials with different properties. In this way the
wave speed can be slowed down by an increase of the density p and a decrease of Young's
modulus E. Using this technique several zones are applied to gradually slow down the wave
speed. The numerical model with these artificial damping zones is given in Fig. 3. Since the
numerical model of the test rig is not complete we have different boundary conditions from
the conditions in the test. The upper and lower bar of the test rig have been modeled with
quadrilateral eight-noded elements with a four-point Gauss integration and with triangular
six-noded elements with a three-point Gauss integration. To avoid reflections at the tran­
sition of the specimen and the test rig the same material parameters are chosen for the test
rig as for the specimen. For the specimen three finite element discretizations have been
used. For the different meshes we use one, two and four rows of elements in the notched
section, respectively. The elements are eight-noded quadrilaterals with a nine-point Gauss
integration. The specimen geometry is width 50 mm, height 100 mm and depth 80 mm and
the notch is 5 x 6 mm (Fig. 3). The applied load is doubled because half of the load
propagates to the specimen as a tensile wave and the other half propagates to the boundary



3264 L. J. Sluys and R. de Borst

elements as a pressure wave and is taken as aA = 34.56 x 106 N S-1 with A the net cross­
section area 40 x 80 mm. For the plain concrete we have the Young's modulus Ec = 40,700
N mm- 2

, Poisson's ratio v = 0.2 and density p = 2350 kg m- 3
• The inelastic parameters

are derived by a straightforward translation of experimental data, which is not a proper
method when we deal with localization phenomena as discussed before. In an inverse
procedure this analysis can be seen as a first iteration. Here it is done to show the spurious
solution that we obtain if we use a standard crack model. A simple linear strain-softening
model is used and in a classical way, using a homogenization technique, the ultimate crack
strain eu was derived from the ultimate deformation measured in the experiment according
to

bu 0.06
eu = -d- = -6- = 0.01,

notch

(10)

in which eu is the ultimate crack strain and dnotch is the notch height. The constant softening
modulus h was derived from the ultimate crack strain and the dynamic tensile strengthft

(11 )

The dynamic value for ft is taken from empirical relations derived in former programs
(Zielinski, 1982). In contrast to the rate-dependent crack model for the standard crack
model the increase of the tensile strength must be included in the softening function. In the
numerical analyses a section of 5 x 6 mm in front of the left notch was given a material
imperfection in the sense that the tensile strength was reduced by 20%. By inserting an
imperfection the possibility is offered of computing an asymmetric component of the
solution. For the standard crack model we useft and ell' while for the rate-dependent crack
model the additional parameter the viscosity m and, implicitly the length scale I, must be
chosen.

The semi-discrete equations of motion have been solved with a Newmark time inte­
gration scheme using the updates.

(12)

and

(13)

in which ii, a and a are the nodal accelerations, velocities and displacements, respectively.
The integration constants are taken equal to f3 = 1/4 and y = 1/2 corresponding to an
average acceleration scheme. The time step in all analyses At = 1 X 10-6 s and a consistent
mass matrix has been used. The Newmark scheme is used in combination with a full
Newton-Raphson procedure to solve the nonlinear algebraic set of equations.

The results of the analyses with the standard crack model show the problem of mesh
dependence as a consequence of the difficulty of the rate boundary value problem. Cracks
start to propagate in one row ofelements from the two notches to the center of the specimen.
In Fig. 4 it is shown that the deformation (plotted with a multiplication factor equal to
500) localizes in one single row of integration points for each of the three meshes. A second
problem becomes apparent which is caused by the complex nature of the problem, namely
the mesh alignment of the results, i.e. the cracks or the localization of deformation have a
preferential direction of propagation which is aligned with the mesh lines. For mesh 3 we
observe a clear spurious deformation pattern with the localization concentrated in a single
band of elements which generally follows the mesh lines and occasionally jumps from one
row to the next and back without any physical motivation. The relation between fineness
of mesh and post-peak response for the standard crack model is demonstrated in Fig. 5. It
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Fig. 5. Stress-deformation curve inside the fracture zone.

shows a stress-deformation curve, in which 0notch represents the mean deformation over the
left and the right notch and (J represents the vertical stress at the top of the specimen. A
comparison can be made with experimental data (Weerheijm, 1992). The area under the
curve is not an objective measure for the fracture energy. Mesh dependence starts already
in the pre-peak regime, when the cracks propagate from the notch to the center of the
specimen. This results in a lower peak stress for the finest mesh.

The same test has also been analyzed using the G,type crack model. The model
guarantees a mesh-objective fracture energy dissipation for this problem with one failure
plane, but the observation that localization zones are biased by the discretization and tend
to propagate along mesh lines still holds (see Glynn, 1995).

For the analysis with the rate-dependent crack model we apply a slight modification
of the parameter set. For the standard crack model the increase of tensile strength due to
dynamic effects must be incorporated entirely in the strain-softening function, whereas in
the rate-dependent crack model strain-softening can occur before the ultimate stress is
reached. Already in the pre-peak regime we model at a constitutive level some damage
through strain-softening while viscous effects cause the further increase of the stress. For
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this reason a redistribution of stresses is possible already in the pre-peak regime. In this
analysis we assume that the stress at which strain softening starts is 80% of the dynamic
tensile strength of the concrete, 4.9 N mm- 2

, yielding}; = 3.92 N mm- 2
• In experiments it

is observed that at this stress level micro-cracks start to develop. Furthermore, we take the
strain-softening modulus h = -2500 N mm- 2 and the viscosity m = 0.1 Ns mm- 2

• In
combination with the used parameter set this results in a length scale parameter 1= 20.5
mm [eqn (4)].

The results in Figs fr-9 show markedly the effect of viscous regularization. At the
notches the very local stress concentrations keep the band small, but the width of the
localization band increases when the crack propagates to the center of the specimen. The
patterns of the incremental displacements in Fig. 6 show the independence of the fineness
and the directional bias of the mesh. The cracks branch off and the deformation band
becomes wider, independent of the direction of the grid lines. The development of the
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fracture process zone is shown in Fig. 7 for the axial strains in the area between the notches.
Cracking starts at the upper and lower corners of the notches. Both cracks at the left notch
first join and at a later stage split up into two separate localization bands. Hence there
remains an almost unstretched zone in the center of the specimen. The same crack propa­
gation process occurs at the right notch. Again, the numerical results have been compared
with the experimental data (Weerheijm, 1992). The stress-deformation curves of the
numerical analyses as well as those of the experiment have been plotted in Fig. 8. We
observe not only mesh independence, but also a reasonable agreement between numerical
analyses and experiment. The calculated maximum tensile stress is slightly smaller and the
application of a linear strain-softening model prevents the proper simulation of a nonlinear
softening branch, which has been measured in the experiment. Finally, the effect of a
variation of the length scale parameter 1has been examined through varying the viscosity
m. In Fig. 9 the axial strains in a cross-section (x = 25 mm) show the dependence of the
localization zone on I. An increase of 1 by a factor of 2 provides a wider and smoother
localization zone, whereas a division of 1 by 2 yields sharper peaks for the strains in a
smaller localization zone. In the stress-deformation curve in Fig. 9 a smaller value for 1
leads to a steeper drop in the curve and a more brittle behavior, whereas an increase of 1
yields a more ductile response, although the maximum stress is predicted more accurately.
Hence, 1is a parameter which has an influence similar to that of the fracture energy Gr.

Now the role of the imperfection adjacent to the left notch, which has been applied in
order to trigger an asymmetric failure mode, will be discussed. The rotation during failure
which is observed in the test is found to be less pronounced in the numerical simulations.
The analysis with 1= 41.0 mm shows a purely symmetric response, 1= 20.5 mm leads to a
slight rotation of the specimen and only 1= 10.25 mm offers the possibility of simulating
rotation of the crack plane. However, the latter analysis gives a worse prediction of the
global response as observed in Fig. 9. A remarkable result is that in the experiment as well
as in the numerical simulation (l = 10.25 mm) the entire rotation occurs in the pre-peak
regime. Rotation starts when the first cracks appear at the left notch and reaches its
maximum when the crack pattern is complete and the ultimate stress is reached. As discussed
before the response is influenced not only by material behavior, but also by structural
effects. It is plausible that the test rig has an influence on at least a part of the rotation of
the specimen. In the numerical simulation the test rig differs from the real configuration,
as has been discussed above, which can be a cause of the poor prediction of the rotation of
the specimen. A second point ofconsideration is the plane-stress modeling of an experiment
in which three-dimensional effects are present. This can also contribute to an asymmetric
response. A third possible cause for the discrepancy is the linear softening branch that has
been utilized.

5. REINFORCED CONCRETE-PREDICTION OF CRACK SPACING

We now consider a reinforcing bar which is loaded at two sides by impact loads F(t).
The loading is such that cracking is initiated when the two loading waves meet in the center
of the bar while the response of the steel bar remains elastic. A relatively long bar has been
used to prevent waves reflecting at the two ends of the bar before the primary crack pattern
has developed. The data set for the reinforcing bar problem is as follows (symbols are
explained in Fig. 10). The bar geometry is length L = 4000 mm, cross-section A = 100 x 100
mm2 and a 020 reinforcement bar. The applied loading is distributed over the cross-section
such that the interactive forces at both ends are zero, i.e. Fa = 18.3 kN (15.0 kN on the
concrete and 3.3 kN on the steel bar) and t d = 0.00005 s. For the concrete we have a
Young's modulus Ec = 30,000 N mm- 2

, Poisson's ratio v = 0.2, density p = 2400 kg m- 3
,

tensile strength It = 2.0 N mm- 2 and ultimate strain Gu = 0.001. For the Grtype crack
model the additional parameter is the finite element size, while for the gradient crack model
used here the gradient constant C, and implicitly the length scale 1must be defined. The
algorithmic aspects of the mixed finite element formulation for the gradient model with
reduced integration are given in Pamin (1994). The constitutive equation for the reinforce­
ment reads: E, = 210,000 N mm- 2

, p = 7800 kg m- 3 andfsy = 500 N mm- 2 and for the
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Fig. 10. Reinforcing bar.

bond-slip characteristic a = 2.0 N mm~2 and 00 = 0.06 mm [cf. eqns (7)-(8)]. Again, a
Newmark time integration scheme has been used with I1t = 2.5 X 1O~6 s, P= 1/4, y = 1/2
and the mass consistently distributed. Two different meshes have been used, see Fig. 10.

5.1. Perfect bond
Perfect bond can be established by omitting the interface elements from the finite

element geometry in Fig. 1. If the response of the steel remains elastic, perfect redistribution
of stresses in the bar is obtained. The crack concept has been studied for the perfect bond
case and the results are shown in Figs 11-13. In Fig. 11 the strains in the concrete are given
for the standard crack model with mesh 1 and with mesh 2. The classical mesh-sensivity
problem for the crack width also plays a role for softening materials with reinforcement,
since all deformations per primary crack occur in one vertical row of finite elements.
The number of cracks computed for mesh 1 decreases considerably when using mesh 2.
Consequently, the bar discretized with a finer mesh behaves more brittle (less energy per
primary crack is consumed) which reduces the number of cracks. Since the crack spacing
is not computed correctly the amount of energy that is consumed in the bar is arbitrary.

For the gradient model the results are different. Taking the length scale parameter
1= 10 mm gives a dense pattern of primary cracks (see Fig. 12). The results are no longer
arbitrary, i.e. for the two meshes we obtain similar results, although mesh 1 is still slightly
too coarse to reproduce this crack pattern. For this case, i.e. without the incorporation of
bond-slip, the length scale parameter I sets a value for the crack spacing Is >:::: 92 mm. For

x [m]
1.00.80.60.40.2

- mesh 1
- - mesh 2

-

1- "'/\ V\ ~ f\ .-.

I I I I

0.0

0.0

2.0

4.0

Fig. II. Standard crack model-perfect bond-mesh I and 2-1 = 0.0015 s. Arbitrary locations of
primary cracks.
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Fig. 12. Gradient crack model with 1= 10 mm-perfect bond-mesh I and 2. Crack spacing I, at
t = 0.0015 s.
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Fig. 13. Gradient crack model with 1= 20 mm-perfect bond. (a) Uniform distribution of strain
in concrete at t = 0.001 s; (b) stroboscopic evolution of strain in reinforcement (0 < t < 0.001 s).

an analysis with a length scale I = 20 mm the results are given in Fig. 13a. For this analysis
the perfect redistribution of the stress through the perfect bond behavior results in a uniform
distribution of crack strains over the bar. After the two waves have met in the center of the
bar the elastic wave is split up into an elastic part (it-Fa/A) which approximately propa­
gates with the bar velocity Ce = ftiP and an inelastic part that causes cracking which
propagates with speed Cer • As shown in Fig. 13b the strains in the reinforcement, which
remain elastic, are the same as the total strains (sum of elastic and crack strain) in the
concrete. It can be said that there is a certain threshold in the length scale parameter above
which a uniform distribution of crack strain is found.

5.2. Bond-slip
For the proper calculation of the crack spacing and the crack width the inclusion of

bond-slip is crucial. To demonstrate the character of the solution for an analysis with the
standard crack model Fig. 14 shows the plots for the strains in the concrete (a) and the
steel (b), the shear deformation in the interface (c) and the axial displacements (d). After
the two waves have met a first primary crack appears. When the stress wave propagates
further a second and a third primary crack occur. At the locations of primary cracks a
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Fig. 14. Standard crack model-bond~slip-mesh2-1 = 0.0015 s. (a) Strain in concrete; (b) shear

deformation in interface; (c) strain in steel and (d) axial displacements.

steep gradient in slip in the interface element takes place. Although the response of the steel
is elastic the peaks in the strain profile are clear. For the standard crack model as well as
for the Grtype crack model the dependence of the crack spacing on the spatial discretization
(mesh size) and the time integration scheme (Newmark-average acceleration vs New­
mark--damped) have been studied and the results are given in Fig. 15. For these analyses
a primary crack occurs in one vertical row of finite elements, and the spacing between the
cracks is influenced by the finite element size and the time integration procedure. The latter
observation is shown for different Newmark schemes, but a variation of time step or a
lumping of the mass lead to similar spurious results. The mesh dependence with respect to
the crack spacing cannot be repaired by using a Grtype crack model and for this reason
global mesh-objectivity for the strain energy consumption (as obtained in plain concrete
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Fig. 15. Comparison of crack models-bond-slip-t = 0.0015 s. Top: standard crack model­
mesh I and mesh 2. Center: Grtype crack model-mesh I and mesh 2. Bottom: variation of time

integration scheme-mesh 2.

analyses with this model) is not achieved. Although the amount of energy consumed per
crack is roughly the same for both meshes, the location of the primary cracks and the crack
spacing, which is related to the number of cracks, is arbitrary.

For the gradient model with a length scale I = 20 mm the in-objectivity in crack width
and crack spacing is removed completely. The two meshes give the same results for the
response in the concrete, the interface and the steel (see Fig. 16). The distance between the
cracks is rather constant (ts ~ 190 mm). If we match the value for the crack spacing Is with
the crack spacing measured in experiments, the length scale parameter that is needed in the
computation can be determined. Consequently, the gradient parameter c, which is a function
of the length scale parameter, follows from the crack spacing observed in tests. The influence
of the length scale parameter I on the crack spacing Is has been analyzed in Fig. 17. It is
clear that the crack spacing is proportional to the length scale. A remarkable result is
obtained for smaller length scales (see Fig. 18). From the two pictures with a stroboscopic
evolution of the crack strain it is observed that, first a pattern with cracks at regular
distances occurs, while upon further loading the crack spacing is reduced by a factor of
two. Only the localized deformation of every other primary crack further evolves.
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Fig. 16. Gradient crack model with 1= 20 mm-bond-slip-t = 0.0015 s. (a) Strain in concrete;
(b) shear deformation in interface; (c) strain in steel and (d) stroboscopic development of crack

strains.

Finally, the influence of the bond-slip characteristic on the crack spacing has been
investigated. Three shear traction-slip curves have been considered. Compared to the
reference curve, the level of deformation, 6 = 60' and the level of shear traction at which
perfect slip occurs, r = 1.9a, have been increased by a factor of 2 and 1.5, respectively (see
Fig. 19). The curves show the crucial role that the bond-slip behavior plays in the analysis.
A stiffer bond-slip characteristic decreases the distance between the primary cracks while
a softer bond-slip relation increases the value for the crack spacing. Again, perfect bond
between concrete and reinforcement completely smooths out the inelastic deformations and
a crack spacing cannot be observed (at least not with this length scale parameter).
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Fig. 17. Gradient crack model-mesh 2-( = 0.0015 s. Variation of the length scale parameter.
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Fig. 18. Gradient crack model with 1= 15 mm-mesh 2-shift in primary crack pattern. Top:
0< « 0.001 s. Bottom: 0.001 < « 0.0015 s.

6. CONCLUDING REMARKS

The width of a single crack in plain concrete and the spacing of primary cracks in
reinforced concrete have been studied. Attention is focused on the influence of the crack
concept on the crack spacing. A comparison has been made between the standard crack
model, the fracture energy-type crack model, the rate-dependent crack model and the
gradient crack model. By using the standard crack model mesh sensitivity is obtained for
the width of a single crack and for the spacing between cracks in reinforced elements.
Although a fracture energy-type model prevents the energy release per primary crack from
going to zero upon mesh refinement, the results for the crack spacing remain arbitrary.
Both spatial and time discretization influence the value for the crack spacing when we use
a standard crack model or a fracture energy-type crack model. The strain-rate dependent
crack model and the strain-gradient model provide satisfactory results through the intro­
duction of a length scale parameter. Mesh sensitivity with respect to the crack width in
plain concrete and the crack spacing in reinforced concrete can be removed. The additional
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Fig. 19. Gradient crack model with I = 20 mm-mesh 2. Influence of the bond-slip characteristic.

parameter in the gradient model can be coupled to the crack spacing measured in exper­
iments. Furthermore, the crucial role of the bond-slip characteristic in predicting crack
spacing in reinforced elements is highlighted.
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